Evidence for a Relationship between H Excretion and Auxin in Shoot Gravitropism.

نویسندگان

  • L Z Wright
  • D L Rayle
چکیده

The role of auxin and protons in the gravitropic response of the sunflower (Helianthus annuus L. cv Sungold) hypocotyl has been investigated. No physiological asymmetry in acid-growth capacity could be detected between the upper and lower surfaces of gravistimulated hypocotyls. These data imply that neutral buffers inhibit shoot gravitropism by preventing the establishment of a lateral proton gradient along gravitropically stimulated hypocotyls. Indirect evidence that auxin is involved in the establishment and/or maintenance of such a gradient derives from the quantitative assessment of the effects of exogenous auxin, anti-auxins, and vanadate on gravicurvature. At low concentrations, exogenous auxin accelerated curvature; at high concentrations, curvature was prevented. Vanadate, an inhibitor of auxin-enhanced H(+) secretion, alpha-(p-chlorophenoxy)isobutyric acid (PCIB), an anti-auxin, and 2,3,5-triiodobenzoic acid (TIBA), an auxin-transport inhibitor, prevented observable asymmetric proton excretion using a brom cresol purple agar technique and also inhibited gravicurvature. Vanadate, PCIB, and TIBA inhibition of gravicurvature could be reversed with acid treatment to the lower surface of a gravistimulated hypocotyl. Auxin treatment to the lower surface of a gravistimulated hypocotyl did not reverse vanadate-induced inhibition, but it did partially reverse PCIB- and TIBA-induced inhibition. These results indicate a close relationship between the acid-growth theory and the differential growth responses of the sunflower hypocotyl during gravitropism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strigolactones regulate rice tiller angle by attenuating shoot gravitropism through inhibiting auxin biosynthesis.

Tiller angle, a key agronomic trait for achieving ideal plant architecture and increasing grain yield, is regulated mainly by shoot gravitropism. Strigolactones (SLs) are a group of newly identified plant hormones that are essential for shoot branching/rice tillering and have further biological functions as yet undetermined. Through screening for suppressors of lazy1 (sols), a classic rice muta...

متن کامل

Maize LAZY1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling, and light response.

Auxin is a plant hormone that plays key roles in both shoot gravitropism and inflorescence development. However, these two processes appear to be parallel and to be regulated by distinct players. Here, we report that the maize (Zea mays) prostrate stem1 mutant, which is allelic to the classic mutant lazy plant1 (la1), displays prostrate growth with reduced shoot gravitropism and defective inflo...

متن کامل

Brassinosteroid control of shoot gravitropism interacts with ethylene and depends on auxin signaling components.

PREMISE OF THE STUDY To reach favorable conditions for photosynthesis, seedlings grow upward when deprived of light upon underground germination. To direct their growth, they use their negative gravitropic capacity. Negative gravitropism is under tight control of multiple hormones. METHODS By counting the number of standing plants in a population or by real time monitoring of the reorientatio...

متن کامل

Identification of the gravitropism-related rice gene LAZY1 and elucidation of LAZY1-dependent and -independent gravity signaling pathways.

We identified the gene responsible for three allelic lazy1 mutations of Japonica rice (Oryza sativa L.) by map-based cloning, complementation and RNA interference. Sequence analysis and database searches indicated that the wild-type gene (LAZY1) encodes a novel and unique protein (LAZY1) and that rice has no homologous gene. Two lazy1 mutants were LAZY1 null. Confirming and advancing the previo...

متن کامل

Basipetal auxin transport is required for gravitropism in roots of Arabidopsis.

Auxin transport has been reported to occur in two distinct polarities, acropetally and basipetally, in two different root tissues. The goals of this study were to determine whether both polarities of indole-3-acetic acid (IAA) transport occur in roots of Arabidopsis and to determine which polarity controls the gravity response. Global application of the auxin transport inhibitor naphthylphthala...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 72 1  شماره 

صفحات  -

تاریخ انتشار 1983